&

React Native Developer
Interview Handbook

Your Ultimate Guide to Crack React Native Interviews with Confidence

500+ Real Interview
Questions with Clear Explanations

4

Written By /

Anand Gaur :

Table of Contents

IR 511 e Yo 1 o3 4 oY o 8
e Why This Handbook?
e How to Use This Handbook Effectively
e Levels of React Native Interviews (Fresher, Mid-level, Senior, Architect)

2. REACE NatIVE BaSICS toouuuietiiinririie i et e srrsnmrmnsn s s s ramsnsseaannnns eassnnnesrrassnnnrnnnrnnnns 12

History of React Native & Ecosystem

How React Native Works Internally

React Native Architecture (JavaScript Core / Hermes, Fabric, TurboModules)
React vs React Native Differences

React Native App Lifecycle (i0OS & Android)

React Components: Function vs Class Components

JSX Basics and Best Practices

3. JavaScript & TypeScript for React Nativeccccveiiiiiiii i v e 41

JavaScript Essentials (Variables, Scopes, Closures, Hoisting)

ES6+ Features (Arrow Functions, Spread, Destructuring, Promises)
Async Programming: Promises, async/await, event loop

TypeScript Basics & RN Project Setup

Types, Interfaces, Generics, Utility Types

Strict Mode & Type Safety in Large Applications

Common JS/TS Interview Patterns

0 N == Lo o F= 0.0 =) 011 £ 85

Virtual DOM & Rendering Concepts
Props, State, and Component Re-renders
Context API

Hooks Deep Dive

Custom Hooks

Controlled vs Uncontrolled Components
Functional Programming Mindset in React

5. Ul Development in REACt NAIVEiiieiiiiiiie i iriie st riimer s riinn e s seassnnnssreasnnnnsarnnnrenrens 105

React Native Rendering Pipeline

Core Components (View, Text, Image, ScrollView, FlatList, SectionList)
Styling (Flexbox, StyleSheet, Responsive Layouts)

Animations (Animated API, Reanimated 2)

Gestures (PanResponder, react-native-gesture-handler)
Platform-Specific Ul (Android vs iOS)

Accessibility in React Native

6. State MaNAGEIMENT ...t rrirerrerrnrrearsanssssraasanssssarssnnsssressannssssesssnnsssesssnssensnsssens 119

e Local State

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 4

Redux

Redux Toolkit
MobX
Zustand
Recoil

Jotai

7. Data PersistenCe & StOra0e - cuuiiieii it it retaa e sraasnnnersrasnnnnsrrrasnnrannrnnnrnnnns 142

AsyncStorage

SQLite in React Native

Realm Database

WatermelonDB

MMKYV (Fast Key-Value Storage)
Secure Storage for Sensitive Data
File System Access

8. Networking in REACE NAtiVevvciriiiireieirneneeriransesseansanssssssssannsssssssnnsmrressnnrensss 163

Fetch API Basics

Axios in React Native

REST API Integration

JSON Parsing Patterns

GraphQL with Apollo

WebSockets in RN

Offline Mode & Caching Strategies
Retry Logic & Error Handling

API Security Essentials

9. Asynchronous Programming & CONCUITENCY ..euuurireeeerrareeerressnnnessrsmnsssrsnrssssnrsnnses 177

JavaScript Event Loop

Timers & Intervals

Promises vs async/await

Handling Multiple API Calls in Parallel

Debouncing & Throttling

Workers in React Native (JSThread, InteractionThread)
Performance Considerations with Async Tasks

10. Architecture & DeSign PatterNsuoicciirieeiirriiireissiasisesrsssnssssnstessnssesanssssnsssransns 192

MVVM in React Native

React Native New Architecture

Clean Architecture for RN

React Native Feature-Based Folder Structure

Dependency Injection Concepts

Common Design Patterns (Observer, Factory, Singleton, Adapter)
SOLID Principles in JavaScript/TypeScript

Scaling a Large React Native Codebase

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 5

11. Package & Dependency ManademeEntcocevviiririieriisennersrassnnnersrsssnnnesresnssnrens 217

package.json Deep Dive

npm vs yarn vs pnpm

Semantic Versioning

Dependency Resolution Issues
Managing Private/Internal Packages
Monorepo Setup (Nx, Turborepo, Lerna)

12. Performance Optimization & Memory Managementcccccevviiiierreinearrennnrmmensnnnerens 223

Hermes Engine & Performance Gains

Reducing Re-renders (memo, PureComponent, keys)
FlatList Performance Optimization

Bridging Overhead & Fabric Architecture

Bundle Size Optimization

Memory Leaks & Cleanup

Jank-Free Animations

Profiling Tools (Flipper, Chrome DevTools)

13. Testing iN REACE NaAtiVeoouiiiii it ei it reaa s e sraannnn s s eeaannnnsrraasnnnreannnnen 242

Unit Testing with Jest

Mocking Modules & Network Calls
React Native Testing Library (RNTL)
Snapshot Testing

End-to-End Testing (Detox)

14. Advanced React NatiVe TOPICS ..u.cuiirveeeriirennnriinssiserrsessessnssssnsssmmmsesssssnssesnnssrssnnes 251

Native Modules & Native Ul Components

Bridging with Java/Kotlin (Android) and Swift/Objective-C (iOS)
Using Third-Party SDKs in RN

Push Notifications (Firebase, OneSignal)

Deep Linking & Dynamic Links

Background Tasks & Headless JS

15. Application Security in REaACE NatiVe.oiiiun i ee i rerar e rn e raannmmrnnnns 273

Secure Coding in JS/TS

SSL Pinning

Secure Storage & Keychain Usage
Preventing Reverse Engineering
Obfuscation & Minification
Handling Sensitive Data

OWASP Mobile Security

16. React Native Ecosystem KNOWIEdge. . .uuiiiieieiireetrireesrreirneesrresssnnnrrssssnnnsmrsnnnees 286

e Google Play Store Submission Steps
e App Signing, Keystore Management

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 6

https://docs.google.com/document/d/1NQZPBd-E1Ab3vocvJ0HZRnhhZ0WP6LhYG-T2w5ztTPU/edit?tab=t.0#heading=h.rd54hyqwgh0i

iOS App Store Submission Process

RN Build Types & Flavors

Handling RN Upgrades & Breaking Changes
Metro Bundler Deep Dive

17. DevOps for React Nativecccviiiii v s s s s s e s e s e e e

Intro to Mobile DevOps

CI/CD Pipelines (GitHub Actions, GitLab, Bitrise, Codemagic)
Automated Testing & Bundle Generation

Fastlane for Android & iOS

App Distribution (Firebase App Distribution, TestFlight)

Crash Reporting (Sentry, Crashlytics)

Monitoring Performance in Production

18. Scenario-Based Interview QUESTIONScveeiineiiii i iri e ir e easnrn e eraannnnarnnnes

How do you optimize a slow React Native app?
How to manage large API responses efficiently?
How to handle offline-first requirements?

How to optimize FlatList with complex items?
How to integrate a native SDK into RN?

How to handle deep linking in an app?

How to debug crashes in production?

Many more...

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 7

1. Introduction

Why This Handbook?

Preparing for React Native interviews can feel confusing because the expectations vary widely
depending on the company, role, and project type. One round may focus heavily on JavaScript
or TypeScript fundamentals, another may test your understanding of React, hooks, lifecycle, or
performance. At senior levels, you'll often be asked about architecture, native modules,
bridging, large-scale app design, and how you optimize cross-platform performance.

That’s exactly why this handbook was created to be your one-stop guide for React Native
interview preparation. Instead of learning from scattered YouTube videos, blogs, GitHub repos,
and outdated tutorials, this book puts everything together in a structured format.

As a developer, I've personally experienced how difficult it is to prepare for React Native
interviews. You end up juggling between React docs, JavaScript guides, native platform notes,
and multiple community libraries. There wasn’t a single resource that combined real interview
questions, clean explanations, practical examples, and scenario-based discussions so | decided
to build one.

This handbook is the result of years of interview experience, combined with questions collected
from real interviews across product companies, startups, and service-based organizations. |
documented every challenging question | came across not just to improve myself, but to help
developers prepare smarter, faster, and with confidence.

Inside this handbook, you’ll find:
e Topic-wise categorized questions covering everything: JavaScript, TypeScript, React
concepts, React Native APls, native modules, performance, architecture, DevOps, and
more

e Coverage for all levels — from freshers starting with React basics to senior developers
and leads preparing for design and architecture rounds

e Scenario-based discussions that reflect real-world interview patterns

e |atest React Native ecosystem topics like Fabric Architecture, TurboModules, Hermes,
Reanimated, state management trends, and cross-platform optimizations

No matter your experience level, this handbook will give you a clear roadmap of what to expect
and how to prepare so you walk into your interview confident and well-prepared.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 8

How to Use This Handbook Effectively

Think of this handbook as a structured preparation guide instead of random notes. Here’s the
ideal order:

1. Start with fundamentals

If you're a fresher, begin with JavaScript and TypeScript basics, ES6 concepts, React
fundamentals, JSX, components, and the React Native lifecycle.

2. Move into Ul development

Learn styling, Flexbox, FlatList optimizations, navigation (React Navigation), gestures,
animations, and platform-specific Ul behavior.

3. Deep-dive into state management

Practice with Context API, Redux, Redux Toolkit, Zustand, MobX, Recoil, and understand when
to choose which.

4. Explore data handling and async programming

Networking with fetch/axios, caching, offline mode, async/await, parallel API calls, promises,
WebSockets.

5. Grow into advanced concepts

React Native architecture, Fabric, TurboModules, native modules using Swift/Kotlin,
performance tuning, bundle optimization.

6. Don’t ignore DevOps and Security

App builds, release processes (Play Store, App Store), CI/CD, OTA updates (CodePush), SSL
pinning, secure storage, crash analytics.

7. Wrap up with scenario-based questions
These sharpen your real-world thinking and prepare you for problem-solving rounds like:

How do you optimize a complex FlatList?

How do you manage state in a large-scale app?
How would you design offline-first data flow?

How to integrate a native Android/iOS SDK in RN?

Following this sequence ensures you build a complete understanding instead of studying
random topics without direction.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 9

Levels of React Native Interviews

Fresher / Junior (0-2 years)

Expect questions on:

JavaScript basics, ES6, async/await

React fundamentals: components, props, state, hooks
React Native basics: views, styling, navigation, API calls
FlatList, basic forms, error handling

Differences between React and React Native

Mid-level (2-5 years)

Focus shifts to:

Performance optimization concepts

State management (Redux, Context, Zustand)
React Navigation internals

Local storage (AsyncStorage, MMKYV, SQLite)
Native APIs, lifecycle, animations

Debugging and profiling

TypeScript best practices

Senior (5+ years)

You'll be evaluated on:

Designing scalable apps and modular architectures

Clean architecture patterns in RN

Native module creation and bridging

Performance optimization (Hermes, re-renders, batching, virtualization)
CI/CD pipelines, OTA updates (CodePush)

Leading teams, mentoring, and reviewing code

Handling large, cross-functional projects

Architect / Lead
Interviews go far beyond coding:

Enterprise-level architecture, micro-frontends, monorepos
Large-scale state management strategies

Decisions around Fabric, TurboModules, and native integration
System design for mobile

CIl/CD, automation, distribution workflows

Security best practices

Communication, planning, conflict resolution

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

10

Common Interview Patterns in Product & Service
Companies

Product Companies (FAANG, Unicorns, High-Scale Startups)
Expect deeper rounds like:

JavaScript/TypeScript fundamentals & async challenges
React internals, reconciliation, rendering strategies
State management patterns, re-render optimization
System design for mobile apps, scalability

Architecture discussions (monorepo, modularization)
Performance tuning: memory, FPS, bridging overhead
Behavioral rounds

Service Companies (TCS, Accenture, Infosys, Wipro, etc.)
Focus is more practical and implementation-oriented:

Ul development, navigation, basic animations
APl integration, forms, validation, error handling
Storage, offline sync, Redux basics

Standard libraries and ecosystem knowledge
Scenario-based problem-solving

Faster interview cycles, fewer rounds

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

11

2. React Native Basics

Q1: What is React Native?

React Native is an open-source mobile application framework used to build Android
and iOS apps.

It was developed by Facebook (now Meta) and first released in 2015.

React Native allows developers to write apps using JavaScript or TypeScript, following
React concepts such as components, props, state, and hooks.

It supports a single codebase that works on both Android and iOS, which reduces
development time and effort.

React Native uses real native Ul components like View, Text, and Image, and does
not use HTML or WebView, so apps look and feel like native apps.

React Native applications provide near-native performance, which is suitable for most
business and consumer applications.

When required, developers can also write native code using Kotlin/Java for Android
and Swift/Objective-C for iOS, giving more flexibility.

React Native is widely used in the industry and is adopted by companies like
Facebook, Instagram, and Shopify, with strong community support.

Q2: Why did you choose React Native for your projects?

1. Single codebase for multiple platforms

React Native allows writing one codebase
The same code works on:
o Android
o i0OS
This reduces development and maintenance effort

2. Faster development

React Native speeds up development
Features like hot reloading help see changes instantly
Faster development leads to quicker releases

3. Near-native performance

React Native uses real native Ul components
Performance is close to native apps
Suitable for most real-world applications

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 2

4. Cost-effective solution

e One team can handle both platforms
e |ess development time means lower cost
e (Good choice for startups and businesses

5. Reusable and maintainable code

e Uses component-based architecture
e Ul components can be reused
e Code is easier to manage and maintain

6. Strong community and ecosystem

e Large developer community
e Many third-party libraries available
e FEasy to get support and solutions

7. Easy integration with native code

Native code can be added when required
Android — Kotlin / Java
iOS — Swift / Objective-C

Gives flexibility for platform-specific features

Q3: What is the difference between Native development and

React Native?

Feature Native Development React Native

Platform Android and iOS developed Android and iOS from a single
separately codebase

Programming Kotlin/Java (Android), JavaScript / TypeScript

Language Swift/Objective-C (i0S)

Codebase Separate codebase for each Single shared codebase
platform

Ul Components Direct use of platform-specific Uses real native Ul
native Ul components via React

Performance Best possible native performance Near-native performance

Development Speed | Slower due to separate Faster due to code sharing
development

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

13

3. JavaScript & TypeScript for React Native

Q:1 What are the different ways to declare variables in
JavaScript?

In JavaScript, variables can be declared in three main ways:

1. var
2. let
3. const
1. var
e Introduced in older versions of JavaScript
e Has function scope
e Can be re-declared and re-assigned
e Gets hoisted (initialized as undefined)
e Not recommended in modern JavaScript
2. let
e Introduced in ES6
e Has block scope
e Can be re-assigned
e Cannot be re-declared in the same scope
e Safer than var

3. const

Introduced in ES6

Has block scope

Used for values that should not change
Cannot be re-assigned

Must be initialized at declaration

Q:2 What is hoisting in JavaScript?

e Hoisting is a JavaScript behavior where variable declarations are moved to the top
of their scope during the compilation phase.

e Only declarations are hoisted, not initializations.
How hoisting works
e JavaScript scans the code before execution

e Variable and function declarations are registered first
e Actual value assignment happens at runtime

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 4 1

Hoisting with var

e var declarations are hoisted and initialized with undefined
Hoisting with 1let and const

e let and const are hoisted but not initialized

e They stay in the Temporal Dead Zone (TDZ)

e Accessing them before declaration causes an error

Hoisting with const

e Sameas let
e Additionally, const must be initialized at declaration

Real-World Analogy

e Hoisting is like reserving seats before the event
e The name is registered, but the person arrives later

Q3: What is block scope in JavaScript?

e Block scope means a variable is accessible only inside the block { } where itis
declared.

e \Variables declared using 1let and const have block scope.

e A block can be:

o if block
o for/while loop
o { } block

Key Points

e let and const — block-scoped
e var — not block-scoped (function-scoped)
e Block scope helps prevent unintended variable access and bugs

Code Example:

Using let (Block Scoped)

if (true) {
let x = 10;

}

console.log(x);

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 42

Using var (Not Block Scoped)

if (true) {
var y = 20;

}
console.log(y); v

Why block scope is important
e Prevents variable conflicts

e Makes code safer and predictable
e Improves readability and maintainability

Q:4 What is function scope in JavaScript?

e Function scope means a variable is accessible only inside the function where it is
declared.

e Variables declared using var have function scope.

e let and const do not have function scope; they have block scope.
Key Points

e var — function-scoped

e Variables declared inside a function cannot be accessed outside

e Helps in encapsulation of logic

Code Example:

function test() {
var x = 10;

console.log(x); v

}

console.log(x);

Why function scope matters
e Prevents variables from leaking outside functions

e Useful in older JavaScript code
e Can cause bugs when misused with loops

Q:5 What is global scope in JavaScript?

e Global scope means a variable is accessible from anywhere in the program.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 43

4. React Fundamentals
Q1: What is the Virtual DOM in React?

e The Virtual DOM is a lightweight copy of the real DOM.
e |tis a JavaScript object representation of the Ul.

e React uses the Virtual DOM to optimize Ul updates and improve performance.

Why Virtual DOM is needed

e Updating the real DOM is slow
e Frequent DOM updates reduce performance
e Virtual DOM minimizes direct DOM manipulation

How Virtual DOM works

1. React creates a Virtual DOM tree when the app loads
2. When state or props change:

o A new Virtual DOM is created
3. React compares:

o Old Virtual DOM vs New Virtual DOM

(this process is called diffing)
4. React finds the minimum changes
5. Only those changes are applied to the real DOM
(called reconciliation)

Key Points
e Virtual DOM is faster than direct DOM updates
e React updates only changed components
e Improves Ul performance
e Works behind the scenes (developer doesn’'t manage it)

Q:2 What is the difference between Virtual DOM and Real DOM?

e Real DOM is the actual browser DOM.
e Virtual DOM is a lightweight JavaScript representation of the DOM.

e React uses the Virtual DOM to optimize Ul updates.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 85

Key Differences

Feature Real DOM Virtual DOM
Nature Actual browser DOM Lightweight JS object
Speed Slow updates Fast updates
Memory More memory usage Less memory usage
DOM Direct and expensive Batched and optimized

manipulation

Re-rendering Updates entire subtree Updates only changed nodes
Ul performance | Lower for frequent updates Higher
Used by Vanilla JS React

How updates work

e Real DOM
o Updates happen immediately
o [Each change triggers reflow and repaint

e Virtual DOM
o Changes happen in memory first
o React calculates minimal changes
o Only necessary updates reach the real DOM

Q:3 What is reconciliation in React?
e Reconciliation is the process React uses to update the Ul efficiently.

e When state or props change, React compares the old Virtual DOM with the new
Virtual DOM.

e React then updates only the changed parts of the Real DOM.

Why reconciliation is needed

e Updating the Real DOM is slow
e Reconciliation finds the minimum number of changes
e Improves app performance and responsiveness

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 86

How reconciliation works

1. State or props change
2. React creates a new Virtual DOM tree
3. React compares:

o Old Virtual DOM

o New Virtual DOM

(this is called diffing)

4. React identifies what changed
5. Only those changes are applied to the Real DOM

Key Points
e Reconciliation is based on the Virtual DOM
e Uses a diffing algorithm
e Updates are batched and optimized
e Happens automatically

Important Rules React Uses

e Elements of different types — whole subtree is replaced
e Elements of same type — only changed attributes are updated
e Keys help React identify list items efficiently

Q:4 What is the Fiber architecture in React?

e Fiber is the new reconciliation engine introduced in React 16.

e |t allows React to split rendering work into small units.

e This makes React faster, smoother, and more responsive.

Why Fiber was introduced

e Old React used a stack-based reconciliation (blocking)
e Large Ul updates could freeze the Ul
e Fiber enables:

o Incremental rendering

o Better scheduling

o Priority-based updates

What Fiber actually is

e Fiberis a data structure
e Each Fiber represents:
o A component

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

87

5. Ul Development in React Native
Q:1 What is the React Native rendering pipeline?

e The React Native rendering pipeline is the process by which JavaScript code is
converted into native Ul on Android and iOS.

e |t defines how a React Native component finally appears on the screen.

Step-by-Step Rendering Pipeline

1. JavaScript Execution

e React Native code runs on the JavaScript thread.
e Components are written using:

o React

o JSX
e React creates a Virtual Tree of components.

This step decides what Ul should look like.

2. Shadow Tree Creation (Layout Phase)

e React Native creates a Shadow Tree.
e Shadow Tree:
o Is not visible on screen
o Used only for layout calculations
e Layout is calculated using Yoga (Flexbox engine).

This step decides size and position of Ul elements.

3. Communication to Native (Old: Bridge / New: JSI)

e Layout and Ul instructions are sent to native side:
o Old architecture — Bridge
o New architecture — JSI (direct communication)

Data moves from JS to native efficiently.

4. Native Ul Creation

e Native Ul components are created:
o Android — View, TextView
o i0S — UIView, UILabel
e These are real native components, not WebView or HTML.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 05

5. Rendering on Screen

e Native Ul thread draws components on screen.
e User can interact with the Ul (touch, scroll, gestures).

Q:2 What is the Bridge in React Native rendering?

e The Bridge is the communication layer that allows JavaScript code to talk to native

code in React Native.

e |t connects the JavaScript thread with native modules and Ul components.

Why the Bridge was needed

e JavaScript and native code run in different threads
e They cannot directly talk to each other
e Bridge acts as a messenger between them

How the Bridge works

JavaScript creates Ul updates or calls native APls
Data is serialized into JSON
JSON messages are sent over the Bridge
Native side:
o Deserializes the message
o Executes native code
5. Results are sent back to JavaScript

hownh =

Key Characteristics

e Asynchronous communication

e Uses JSON serialization

e One-way per message

e Shared by Ul updates and native module calls

Limitations of the Bridge

Serialization overhead

Performance bottlenecks for heavy operations
No direct synchronous calls

Can cause Ul lag for complex apps

Q:3 What is the View component in React Native?

e View is the most basic and fundamental Ul component in React Native.

e |tis used to build layouts and containers.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

106

6. State Management
Q:1 What is the Local State in React Native?

e Local state is data that belongs to a single component
e |t controls the Ul behavior and data of that component only

e |tis not shared across the entire app by default

Why Local State is Needed

e To handle Ul changes like:
o Input text
o Button clicks
o Toggle states
o Loading indicators
e Without state, Ul would be static
e Makes the app interactive and dynamic

How Local State Works

e When state changes:
o React re-renders the component
o Ul updates automatically

e State is managed using:
o useState hook (most common)
o this.state in class components (older way)

Common Use Cases of Local State

Form input values
Show / hide password
Loading spinner

Modal open / close
Checkbox or switch value

Common Mistakes

e Updating state directly
count = count + 1
e Forgetting that state updates are async
e Using too much local state instead of lifting it up

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

119

Q:2 What is Redux?
e Redux is a state management library
e |tis used to manage global application state

e Multiple components can read and update the same data from one place

Why Redux is Needed

Passing props deeply becomes messy (prop drilling)
Many screens need the same data (user info, cart, auth)
State logic becomes hard to track in large apps

Redux gives predictable and centralized state

Core Idea of Redux

e App has one global store
e State is read-only
e Changes happen in a controlled way

Three Core Principles

1. Single Source of Truth
o Whole app state lives in one store

2. State is Read-Only
o You cannot change state directly
o You must send an action

3. Changes via Pure Functions
o State changes happen through reducers
o Reducers return a new state

Key Redux Components
1. Store

e Holds the entire app state
2. Action

e Plain JavaScript object
e Describes what happened

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

120

3. Reducer

e Function that decides how state changes

4. Dispatch

e Sends action to the store

How Redux Works (Flow)

Ul triggers an action
Action is dispatched
Reducer receives action
Reducer returns new state
Store updates state

Ul re-renders

o wN =

When to Use Redux

e Large applications

e Shared data across many screens
e Complex state logic

e Authentication, cart, user profile

When NOT to Use Redux

Small apps

Simple Ul state

One or two screens only
Local state is enough

Q:3 How do you create a Redux store?
e Store is the central place that holds the entire app state
e Only one store exists in a Redux application

e [t connects actions, reducers, and Ul

Basic Way to Create a Redux Store

1. Create a Reducer

const counterReducer = (state = @, action) => {
switch (action.type) {

case "INCREMENT":

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

121

7. Data Persistence & Storage

Q: 1 What is AsyncStorage in React Native?

AsyncStorage is a simple, unencrypted, asynchronous key—value storage system in React
Native.

It is used to store small amounts of data locally on the device and retrieve it later, even after
the app is closed or restarted.

Why AsyncStorage is Needed

Mobile apps often need to store data that should:

e Persist after app restart
e Be available offline
e Be quickly accessible

AsyncStorage helps store such data without a database setup.

Common Use Cases

AsyncStorage is typically used for:

Login tokens (JWT, auth token)

User preferences (theme, language)
App settings

Onboarding status (first launch or not)
Cached small API responses

. Not meant for large or sensitive data.

How AsyncStorage Works
e Data is stored as key—value pairs
e Both key and value are strings
e Operations are asynchronous
e Returns Promises

Internally:

e Android — uses SharedPreferences / SQLite
e iOS — uses native storage mechanisms

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 42

Limitations of AsyncStorage

Not encrypted

Not suitable for large data
Slower than in-memory state
No complex querying

<" For secure data, use Secure Storage / Keychain

Q:2 Can you use async/await with AsyncStorage?

Yes. AsyncStorage methods return Promises, so they are designed to be used with
async/await.

Why async/await Works with AsyncStorage

e All AsyncStorage APIs are asynchronous

e Methods like:
o setltem
o getltem
o removeltem
o clear
e Return a Promise
e async/await makes the code:
o Easier to read
o Easier to debug
o Less nested than .then()

Q:3 What is SQLite?

SQLite is a lightweight, embedded relational database used to store structured data locally
on the device.

It works inside the app, does not require a server, and stores data in a single database file.
Why SQLite is Used
Mobile apps often need to store:

e Large amounts of data
e Structured data with relationships
e Data that must be queried, filtered, sorted

AsyncStorage is not enough for this. SQLite solves that problem.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 43

8. Networking in React Native

Q:1 What is the Fetch APl in React Native?

The Fetch API in React Native is a built-in JavaScript APl used to make network requests
such as calling REST APIs, fetching data from a server, or sending data to a backend.

React Native uses the same Fetch API standard as the browser, so the syntax and behavior
are very similar.

Key Characteristics of Fetch API

1. Built-In

e Fetch is available by default in React Native
e No installation required
e Works out of the box

2. Promise-Based

e Fetch returns a Promise
e Works naturally with:
o .then()

o async / await

fetch(url).then(response => response.json());

3. Asynchronous

e Network calls do not block the Ul
e Runs in the background
e Ul stays responsive

4. Platform Independent

e Same code works on:
o Android
o i0S
e React Native handles native networking internally

Q:2 What is Axios?

Axios is a popular third-party JavaScript HTTP client library used to make network

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 63

requests from applications, including React Native apps.

It is built on top of Promises and provides a cleaner, more powerful APl compared to the

native Fetch API.

Why Axios Is Used Instead of Fetch

While Fetch is built-in, Axios is often preferred because it:

e Reduces boilerplate

e Handles common use cases automatically

e Makes API handling more maintainable in large apps

Key Features of Axios
1. Promise-Based

e Supports async / await
e Cleaner error handling

2. Automatic JSON Transformation

e Automatically converts:
o Request body — JSON
o Response — JavaScript object

No need to call response. json() manually.

3. HTTP Error Handling

e Automatically rejects the Promise for:
o 4xxerrors
o Sxxerrors

4. Interceptors

Interceptors allow you to:

Modify requests before they are sent
Handle responses globally

Attach auth tokens

Handle refresh tokens

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

164

9. Asynchronous Programming & Concurrency

Q:1 What is the JavaScript Event Loop?

The JavaScript Event Loop is the mechanism that allows JavaScript to handle
asynchronous operations (like API calls, timers, promises) without blocking the main
thread, even though JavaScript itself is single-threaded.

Why the Event Loop Is Needed
JavaScript is Single-Threaded

e JavaScript has one call stack
e It can execute only one thing at a time

If JavaScript waited for:

e Network requests
e Timers
e File reads

The Ul would freeze completely.

So the Event Loop exists to keep the app responsive.

Core Components of the Event Loop
To understand the Event Loop, you must understand these parts together:

1. Call Stack

e Where JavaScript executes code
e Functions are pushed and popped from here
e Runs synchronous code

2. Web APIs (Browser / RN Environment)

Provided by the environment, not JS itself.
Examples:

e setTimeout
e fetch

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 77

e DOM events
e \WebSockets

These APls:

e Handle async tasks
e Work in the background

3. Callback Queue (Task Queue / Macro-task Queue)

e Stores callbacks like:
o setTimeout

o setInterval
o Ul events

Callbacks wait here until the call stack is empty.

4. Microtask Queue

e Higher priority than callback queue
e Used by:

o Promises (then, catch)

o queueMicrotask

o MutationObserver

<" Microtasks run before callbacks
5. Event Loop (The Orchestrator)
The Event Loop:

Checks if the call stack is empty
Executes all microtasks

Executes one task from callback queue
Repeats forever

e

Q:2 What is the difference between macrotasks and microtasks
in JavaScript?

JavaScript always executes microtasks before macrotasks once the call stack becomes
empty.

Macrotasks:

Macrotasks (also called the task queue) are larger, scheduled tasks that are executed one at
a time by the Event Loop.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 78

10. Architecture & Design Patterns

Q:1 What is MVVM architecture in React Native?

MVVM stands for Model — View — ViewModel.
It is an architectural pattern that separates Ul, business logic, and data handling to make the
app easier to build, test, and maintain.

Why is MVVM Used in React Native?
MVVM helps solve common problems in large React Native apps.

Problems without MVVM

Ul and logic mixed together

Components become huge and hard to read
Difficult testing

Hard to reuse logic

Bugs increase as app grows

MVVM solves this by

Separating Ul from business logic
Making code modular and reusable
Improving testability

Making the app scalable

MVVM Components:

1. View — The Ul Layer (What the user sees)

e The View is the visible part of the application.
e Responsible only for displaying data
e Handles user interaction (button clicks, input) and It is responsible for displaying data.

In React Native, the View is usually:

e A functional component
e Written in JSX
e Focused on layout, styles, and rendering state

What the View SHOULD do

e Render Ul based on data it receives
e Trigger actions when the user interacts (button click, text input)

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 92

e Show loading, error, or success states

What the View SHOULD NOT do

Make API calls directly

Contain complex business rules
Transform or validate data
Handle side effects

2. ViewModel — The Brain of the Screen
The ViewModel is the most important part of MVVM.

e Acts as a bridge between View and Model
e Holds state and business logic
e Prepares data for Ul

The ViewModel contains state, business logic, and decision-making code.
In React Native, a ViewModel is commonly implemented as:

e A custom hook
e A state container (Redux, Zustand, MobX)
e A combination of hooks and services

Responsibilities of ViewModel

e Fetch data from the Model

e Hold Ul state (loading, error, data)

e Decide what data the View should see

e Expose functions that the View can call
Key idea

The ViewModel does not know anything about Ul layout.
It only knows what data exists and what actions are possible.

Why this matters
Because logic is outside the UlI:

e You can test it without rendering screens
e You can reuse it across multiple screens
e You can refactor Ul without breaking logic

This is what makes MVVM feel professional and scalable.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 93

3. Model — The Data and Business Rules Layer

The Model is responsible for everything related to data.

It does not care about:

e Screens
e Buttons
e User interactions

It only focuses on:

Fetching data
Database logic
Updating data

Applying business rules

In React Native, Model usually includes

e APl services (Fetch / Axios)

e Database logic (SQLite, Realm)
e Data mappers

e Repository functions

Important concept

The Model never talks directly to the View.
It only communicates with the ViewModel.

How All Three Work Together
Let’s understand this with a real scenario.

User opens a screen

ViewModel asks the Model to fetch data
Model fetches data from API or database
Model returns data to ViewModel
ViewModel updates its state

View automatically re-renders with new data

Nooabkowoh=

At no point does:

e The View call the API directly
e The Model update Ul
e The ViewModel control layout

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

View requests data by calling a function from ViewModel

194

Each layer does only its own job.

Why This Separation Is Critical in Real Projects

In small apps, mixing everything inside one component may work.
In real production apps, this causes serious problems:

Components become very large
Logic duplication increases
Bugs are hard to track

New developers struggle to understand the code
Testing becomes painful

MVVM prevents this by enforcing discipline in code structure.

Q2. What is the Difference Between MVC, MVP, and MVVM?

Aspect MVvC MVP MVVM
Full Form Model — View — Model — View — Model — View —
Controller Presenter ViewModel
Main Goal Separate Ul, data, and Improve separation Clean separation with
input handling and testability reactive Ul
Role of View Displays Ul and sends Passive Ul, no logic Displays Ul and

user actions

observes state

Role of Middle Layer

Controller handles
user actions and
updates Model

Presenter handles all
logic and updates
View

ViewModel manages
state and business
logic

Communication Style

View < Controller <

View — Presenter —

View = ViewModel —

Model Model Model
View to Model Often indirect but No direct interaction No direct interaction
Interaction tightly coupled
Does middle layer Yes Yes No

update View directly?

How Ul updates

Controller decides
what View shows

Presenter explicitly
updates View

View auto-updates
when state changes

Coupling Level

High

Medium

Low

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

195

11. Package & Dependency Management

Q:1 What is package.json?

package. json is the main configuration file used in Node.js and React Native projects.

It stores important information about the project such as metadata, dependencies,
scripts, and configuration.

It acts as the “brain” of the project, helping tools and package managers understand how
the project is structured and what it needs to run.

Why package.json Is Important

Defines project name, version, and details

Lists all libraries (dependencies) the project uses
Helps install and manage packages using npm or yarn
Stores scripts that automate tasks

Ensures project setup consistency across systems
Supports version control and collaboration

Role of package.json in React Native

Manages React Native version
Handles third-party libraries

Tracks dependency versions
Supports project scripts

Ensures consistent environment setup

Q:2 What is the dependencies field?

The dependencies field in package. json is a section where all the packages
required for the application to run in production are listed.

These libraries are installed automatically when someone runs npm install or yarn
install.

They are essential for the actual working of the app.

Why the dependencies Field Is Important

It clearly defines which external libraries the app depends on
Ensures consistent setup across all developers and environments

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 1 7

e Helps npm or yarn install the correct packages
e Keeps the project organized and maintainable

Example:

"dependencies": {
"react": "18.2.0",
"react-native": "0.73.0",

"axios": "71.6.0"

Key Points About dependencies

Contains only packages needed at runtime

These packages are bundled into the final build
Version numbers define which release to install
Updating dependencies may update app behavior
Used in both React and React Native projects

Q:3 What are the main differences between npm, Yarn, and
pnpm?

npm, Yarn, and pnpm are JavaScript package managers.
They are used to install, update, and manage dependencies in Node.js and React Native
projects.

e All three do the same job but differ in speed, storage, and features.

npm (Node Package Manager)

Default package manager that comes with Node.js

Uses a node_modules folder to store packages

Installs full copies of each dependency into every project
Simple and widely supported

Works well but may be slower with large projects

Strengths

e Pre-installed with Node.js
e Huge ecosystem
e Official standard tool

Yarn

e Created by Meta (Facebook) as an improvement over npm

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 1 8

12. Performance Optimization & Memory
Management

Q:1 What is the Hermes engine?

e Hermes is a lightweight JavaScript engine developed by Meta specifically for React
Native.

e |tis optimized to make React Native apps faster, smaller, and more memory-efficient,
especially on mobile devices.

e Hermes replaces the default JavaScript engine (like JavaScriptCore) to improve
performance.

Why Hermes Was Created

e Mobile devices have limited CPU, RAM, and storage
e Traditional JS engines were optimized for browsers, not apps
e React Native needed a mobile-first engine focused on startup speed and performance

Key Features of Hermes

1. Ahead-Of-Time (AOT) Compilation

e JavaScript is compiled into bytecode at build time
e Reduces work needed at runtime
e Improves startup speed significantly

2. Smaller App Size

e Bytecode bundles are smaller than JS bundles
e Reduces APKI/IPA size
e Saves storage space on devices

3. Faster Startup Time

e App loads quicker because parsing time is reduced
e Makes Ul appear faster for users

4. Lower Memory Usage

e Hermes is designed to use less RAM
e Important for low-end Android devices

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 22 3

5. Better Debugging Support

e Works with React DevTools
e Includes its own debugger and profiling tools

How Hermes Works in React Native

e When enabled, React Native compiles JS into Hermes bytecode during build
e The engine loads bytecode instead of raw JS
e Less runtime parsing means better performance

When Hermes Is Most Useful

Large apps

Apps with many dependencies
Apps targeting low-end devices
Apps where startup time matters

Key Interview Points

Hermes is a JavaScript engine built for React Native
Improves startup speed and memory usage

Uses ahead-of-time bytecode compilation

Great for performance-critical apps

Especially beneficial on Android devices

Q:2 What causes component re-renders in React?

A re-render happens when React decides that a component needs to update its Ul.
This occurs whenever the data the component depends on changes.

Main Causes of Re-Renders

1. State Changes

e When useState value changes
e React re-renders that component
e And all of its child components (by default)

2. Props Changes

e |[f a parent passes new props to a child
e Even if the Ul output doesn’t change
e The child component re-renders

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

224

13. Testing in React Native

Q:1 What is unit testing in React Native?

e Unit testing is a testing method where you test individual pieces of code (called units)
in isolation.

e In React Native, a “unit” usually means a function, component, hook, reducer, or utility
module.

e The goal is to verify that each small part of the app behaves correctly on its own

What a Unit Test Checks

Correct output for given inputs
Component rendering behavior
State and props logic

Business logic correctness
Edge-case handling

Error handling paths

Why Unit Testing Is Important in React Native

Catches bugs early during development
Makes refactoring safer

Improves code quality and reliability
Prevents regressions when adding features
Builds developer confidence

Helps maintain large codebases

Example Areas Tested in React Native

Pure functions (utilities, helpers)
Reducers and selectors

Hooks

Components rendering states
Validation logic

Formatting functions

Tools Commonly Used

e Jest (most popular test runner)
e React Native Testing Library (for components)
e Enzyme (legacy in web/react)

Jest usually comes preconfigured in React Native projects.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 242

Q:2 What is Jest and why is Jest popular for React Native
testing?

e Jestis a JavaScript testing framework created and maintained by Meta.

e ltis the default and most widely used testing tool for React and React Native
applications.

e Jest runs tests, checks expectations, mocks modules, and reports results in a simple
and efficient way.

Why Jest Is Popular for React Native Testing
1. Built-in Support for React Native

e React Native projects come preconfigured with Jest
e Minimal setup is required
e Works smoothly with React Native modules and components

2. Snapshot Testing Support

e Jest allows snapshot testing, which captures a rendered component’s output
e Makes it easy to detect unintended Ul changes
e Very useful for React components

3. Powerful Mocking System

e Can mock functions, APIs, timers, and modules
e Helps test components in isolation
e Removes dependency on real network calls or devices

4, Fast and Parallel Test Execution

e Runs tests in parallel
e Uses smart caching
e Ensures quick feedback during development

5. Simple and Developer-Friendly Syntax

e Easy to learn and read
e Works well with TypeScript
e Clear error messages and reports

6. Code Coverage Support

e Built-in code coverage reports
e Helps measure how much code is tested

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 243

14. Advanced React Native Topics

Q:1 What is a Native Module in React Native?

e A Native Module is a bridge between JavaScript and platform-specific native code
in React Native.

e |t allows you to write logic in Java (Android), Kotlin (Android), Objective-C (iOS), or
Swift (i0S) and then call that logic from JavaScript.

e This is useful when React Native does not provide a built-in API for some device feature.

Why Native Modules Exist

e JavaScript cannot directly access device-level features
e Native platforms expose powerful APls
e Native Modules allow React Native apps to use them

What Native Modules Are Commonly Used For

Camera access

Bluetooth

Sensors (Gyroscope, Accelerometer)
NFC

Native Ul components

Push notifications

File system and storage

Media playback

How Native Modules Work

You write native code in Android or iOS

You expose native functions to React Native

JavaScript calls those functions like normal JS methods

The Bridge / JSI handles communication between JS and native code

SR> -

When You Need Native Modules

Platform-specific performance optimization
Missing APIs in React Native

Integration with third-party SDKs
Hardware-level access

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 5 1

Q:2 What is the difference between Native Modules and
JavaScript modules?

Native Modules and JavaScript modules both add functionality to a React Native app, but they
run in different environments and are used for different purposes.

What Are JavaScript Modules?

Written in JavaScript

Run on the JavaScript thread

Used for app logic, Ul, state management, utilities, etc.
Fully cross-platform (same code runs on Android and iOS)
Do not directly access device hardware or OS APls

Example:

import mathUtil from './mathUtil’;

What Are Native Modules?

e Written in platform languages
o Java/ Kotlin — Android
o Objective-C / Swift — iOS
e Run in the native layer of the OS
e Exposed to JavaScript via the Bridge or JSI
e Used to access device-level APls or high-performance logic

Example:

NativeModules.DeviceInfo.getModel();

Q:3 What is a Native Ul Component?

e A Native Ul Component is a custom user interface element created in native
platform code (Android or iOS) and then exposed for use inside a React Native app.

e It allows React Native developers to reuse or build Ul elements that are not available in
React Native by default, while still using them like normal React components.

What Makes It “Native”?

e Itis implemented using
o View / ViewGroup in Android
o UlView iniOS

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 252

15. Application Security in React Native

Q:1 What is secure coding and Why is secure coding important

in React Native?

e Secure coding is the practice of writing code in a way that prevents security
vulnerabilities and protects user data from attacks or misuse.

e It means thinking about security while designing, developing, and testing your React

Native app, not just after it is finished.

e The goal is to ensure the app remains safe even if attackers try to exploit weaknesses.

What Secure Coding Involves

Validating all user inputs
Protecting sensitive data
Avoiding hard-coded credentials
Encrypting communication
Handling errors safely

Following security best practices

It is a continuous mindset, not a single step.
Why Secure Coding Is Critical in React Native

1. Protects User Data

e Mobile apps often handle
o personal information
o passwords
o financial data
e Secure coding ensures this data cannot be stolen or leaked

2. Prevents Hacking and Exploits

e Attackers target apps to
o steal data
o inject malicious code
o tamper with APls
e Secure code reduces vulnerabilities

3. Prevents Financial and Business Loss

e Security breaches cause

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

273

o revenue loss
o legal penalties
o brand damage
e Prevention is far cheaper than recovery

Common Security Risks in React Native

Storing secrets in AsyncStorage
Unencrypted APl communication
Weak authentication flows

JavaScript bundle reverse-engineering
Insecure 3rd-party SDK usage

Poor input validation

Leaky logs and debug data

Why React Native Needs Extra Attention

e JavaScript bundle can be decompiled
e Mobile devices can be rooted or jailbroken
e Data may persist locally
e Many layers exist
o JS
o Native
o API
o Database

Security must be applied across all layers.

Q:2 What is SSL/TLS?

e SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are security protocols
that encrypt data sent between a client and a server over the internet.

e TLS is the modern and more secure version of SSL, but people often use the term SSL
to describe both.

e These protocols ensure that data cannot be read or modified while it is being
transmitted.

What SSL/TLS Protects

Login credentials
Personal information
Payment details

API communication

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 274

16. React Native Ecosystem Knowledge

Q:1 What are the prerequisites for Google Play Store
submission?

e Before you can publish a React Native (or any Android) app on the Google Play Store,
there are a number of technical, legal, and policy requirements you must complete.

e These steps ensure your app is secure, high-quality, compliant, and ready for real users.
Developer Account Requirement

You must create a Google Play Console Developer Account
Requires a one-time registration fee

Identity verification may be required

Organization accounts are available for companies

Developer Account Requirement

You must create a Google Play Console Developer Account
Requires a one-time registration fee

Identity verification may be required

Organization accounts are available for companies

Package and Versioning Rules

e Unique applicationld (package name)
e \ersion code must be an integer and always increase
e Version name should match your release plan

Target and Compile SDK Requirements

e App must target minimum API level required by Google
e Must use recent Android SDK versions
e Apps should follow modern privacy and permission rules

Policy and Compliance Requirements

Must comply with Google Play policies
Content policy

Security policy

User data and privacy policy

Ads policy (if using ads)

Financial regulations (if processing payments)

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 86

Failure to comply may lead to rejection.

Privacy Policy Requirement

e Mandatory if your app

o collects personal data

o uses login

o uses analytics

o uses permissions like camera, location, storage
e The policy must be hosted online (URL required)

Data Safety Section

e You must declare
o what data your app collects
o howitis used
o whetheritis shared
o whether itis encrypted
e This appears on your Play Store listing

Providing false information can lead to suspension.

App Content Classification

e Age rating questionnaire must be completed
e Content rating categories include

o Everyone

o Teen

o Mature

o Adult content policies must be respected

Store Listing Assets Required

App name (title)
Short description
Full description
App icon
Feature graphic
Screenshots
o Phone screenshots mandatory
o Tablet screenshots recommended
e Promo videos (optional)

Assets must follow quality guidelines.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

287

17. DevOps for React Native

Q:1 What is Mobile DevOps?

e Mobile DevOps is the practice of combining development, testing, deployment,
monitoring, and operations workflows specifically for mobile applications.

e It adapts DevOps principles to the unique challenges of Android and iOS development,
helping teams deliver mobile apps faster, more reliably, and with better quality.

Why Mobile DevOps Exists

Mobile apps depend on app stores

Release cycles require approvals

Devices and OS versions vary widely
Native builds are complex

Continuous updates and testing are needed

Mobile DevOps solves these challenges with automation and collaboration.

Key Areas Covered in Mobile DevOps

Source code management
Continuous Integration (ClI)
Continuous Delivery (CD)
Automated testing

Build automation

Release management
Monitoring and analytics
Crash reporting

Feedback loops

Typical Mobile DevOps Pipeline

Developer writes code

Code pushed to repository

Cl system builds the app

Automated tests run

Signed release build is generated
Build is deployed to testers or stores
Analytics and crash logs are monitored
Feedback informs the next release

N ORAWDN =

This cycle repeats continuously.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 99

Why It Is Important for React Native Developers

Cross-platform complexity
Native dependencies

Release signing

OTA updates (CodePush etc.)
Need for automated workflows

Mobile DevOps ensures consistency across platforms.

Q:2 What is the CI/CD pipeline in React Native?
e CI/CD stands for Continuous Integration and Continuous Delivery (or Deployment).

e In React Native, a CI/CD pipeline is an automated workflow that builds, tests, and
delivers your Android and iOS apps whenever code is updated.

e The goal is to release high-quality mobile apps faster, with fewer manual steps and
mistakes.

What Continuous Integration (Cl) Means

e Developers push code to a shared repository
e An automated system
o pulls the latest code
o installs dependencies
O runs tests
o builds the app
e This ensures code works properly before merging

It keeps the project stable at all times.

What Continuous Delivery (CD) Means

e After Cl succeeds
e The pipeline automatically
o creates signed builds (APK/AAB/IPA)
o distributes them to testers or stores
e This removes manual packaging work

Releases become predictable and repeatable.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 300

18. Scenario-Based Interview Questions

Q1: How do you optimize a slow React Native app?

Scenario

Your app feels laggy while navigating screens or scrolling. The interviewer wants to know how

you approach performance improvement step-by-step.
Answer

1. First, verify what is actually slow
| check whether the issue is:

Slow navigation

Slow list scrolling

Delayed button clicks

Ul freezes during network calls

| use tools like Flipper or React DevTools to see:

e JS thread activity
e Re-render count
e Memory usage

So | am not guessing. | measure first.

2. Reduce unnecessary re-renders

Many times components update even when nothing important has changed.

| do things like:

e Use React.memo for list rows or Ul-only components
e Use useCallback for functions passed as props
e Avoid keeping too much state at the top level

This keeps React from doing extra work.
3. Optimize lists
If the lag happens in lists, I:

e Use FlatList instead of ScrollView
e Provide keyExtractor with a stable id

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

314

e Use pagination instead of loading everything at once
e Avoid doing calculations inside renderltem

FlatList virtualizes rows so memory stays low.
4. Move heavy work away from Ul
If | notice the JS thread is blocked, | check for:

e Large loops
e JSON parsing
e Image processing

Where possible, I:

e Move work to background
e Do processing before rendering
e Cache repeated results

This keeps the Ul responsive.
5. Optimize images
| ensure:

e Images are compressed
e Caching is enabled
e Correct resolution is used

Large uncompressed images slow rendering.
6. Test in release mode

Debug builds run slower, so before final judgment | test in release.

Q2: How do you manage large API responses efficiently?

Scenario
You receive thousands of records in one API call and the app becomes slow.

Answer

1. Avoid loading everything at once
Instead of fetching the full list, | prefer:
e Pagination

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

315

e Infinite scroll
e Server-side filtering

This keeps memory stable.

2. Use FlatList virtualization

FlatList renders only visible items.
ScrollView renders everything.

So | always choose FlatList for large data.
3. Process data smartly
| avoid:

e Running heavy loops during render
e Re-parsing JSON multiple times

e Clean and format data once
e Store processed data to reuse

4. Store large datasets efficiently

For persistent large data | use:

e SQlLite
e Realm
MMKV

AsyncStorage is fine only for small data.
5. Improve user experience
Instead of freezing, I:

e Show loading states
e Load pages gradually
e Avoid blocking Ul

This keeps the app responsive and user-friendly.

Q3: How do you handle offline-first requirements?

Scenario
Your app must work even without the internet, and sync when connection returns.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 3 1 6

Enjoyed This Preview?

If this sample helped you understand React Native concepts more clearly, you’re going to love
the full React Native Interview Handbook.

The complete book gives you:

{74 500+ real interview questions

"4 Clear, simple explanations

{74 Beginner-friendly to advanced topics

{74 Practical, real-world scenarios

{74 Confidence to crack any Mobile Developer interview

This preview is just the beginning.

The full version goes deeper, explains concepts step-by-step, and prepares you for real
interviews so you don’t just memorize answers, you actually understand them.

If you found value here, consider getting the complete book and unlock the full learning
experience.

Your interview success journey starts here.

<~ If you found this helpful, please purchase the full book to get complete access.

If you enjoyed this, check out my other books

iOS Developer

Flutter Developer
Interview Handbook

‘our Ultimate Guide to Crack Flutter Interviews with Confidence

500+ Real Interview 500+ Real Interview
Questions with Clear Explanations Questions with Clear Explanations
500+ Real Interview
Questions with Clear Explanations

Written B / Written By

4 ritten By

Written By Ande Anand Gaur

Anand Gaur R

"Your Complete Guide to
Cracking React Native Interviews"

About Author

Anand Gaur is a Mobile Tech Lead with rich experience in designing and
developing impactful mobile applications. Skilled across Android, iOS,

Flutter, and React Native, he has mentored many developers and guided
them to crack interviews at leading IT companies.

You can find Anand at https://linktr.ee/anandgaur

ISBN : 978-93-5620-952-7

‘ 7

89356

9 209527

	Enjoyed This Preview?

